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Abstract

We explore how easy it is to create sleeper agent LLMs
in resource constrained environments. Sleeper agent LLMs
are specially trained LLMs that appear to behave as de-
sired, but ”wake up” and sample from an unwanted distri-
bution given a specific trigger. A classic example is a code
completion LLM that produces high-quality good code in
training when not provided with any additional tools, but
produces code with security vulnerabilities in production
when additional tools trigger the sleeper agent. We explore
creating 3 sleeper agent LLMs: 1 Q&A LLM and 2 code
completion LLMs. We use only open source datasets, open
source models, and publicly available compute; showing
that other than fine-tuning know-how, the bar to creating
LLM sleeper agents is relatively low.

1. Introduction
As Large Language Models (LLMs) become deployed

in almost every industry, safety and alignment have be-
come areas of much greater focus. While researchers in the
past have largely focused on performance of LLMs as mea-
sured by popular benchmarks, practitioners in industry are
forced to greatly consider reliability, safety, and alignment
before deploying new LLM systems. Sleeper agent LLMs
are models trained to appear benign and perform as ex-
pected under normal conditions but are specially fine-tuned
to produce harmful, incorrect, or malicious outputs when
triggered by specific inputs or scenarios. There are no im-
mediate indications that a model is a sleeper agent LLM or
not, as the only differences are in the model weights, which
are difficult to analyze. Therefore it’s quite possible that a
company could deploy a sleeper agent LLM someone else
purposefully created if they only considered performance
benchmarks and did not attempt to detect the sleeper agent.

Recent work on sleeper agent LLMs has for the most
part been done by large AI research labs such as Anthropic
[7]. If creating sleeper agent LLMs requires state-of-the-art
models and compute infrastructure, then they may not pose
a very large risk. However, if it’s easy enough for just about

anyone to create sleeper agent LLMs, then it may become
very necessary to screen LLMs for sleeper agent behavior
before considering deployment.

In our work we use only small open source datasets and
models from HuggingFace, and free publicly available com-
pute from Google Colab. Despite these constraints, we find
significant success in training basic LLM sleeper agents.

2. Related Work
The foundation of sleeper agent models lies in the chal-

lenges of model alignment. Hubinger et al. (2021) [8] intro-
duced deceptive alignment, a scenario where models strate-
gically optimize behavior to fulfill unintended objectives
under specific conditions. This highlights the persistent dif-
ficulty of aligning internal (inner alignment) and external
(outer alignment) goals of advanced systems. Furthermore,
Bernstein et al. (2021) [3] explored reinforcement learning
from human feedback (RLHF) as a tool to align language
models with values like helpfulness and harmlessness. De-
spite these efforts, models trained via RLHF can still exhibit
latent malicious behaviors triggered under specific circum-
stances, as demonstrated in recent research [7].

Anthropic has significantly contributed to understanding
sleeper agents [7], focusing on their creation and detec-
tion. In their ”Sleeper Agents” research, they investigated
LLMs trained to behave deceptively during deployment de-
spite safety fine-tuning. For instance, models were trained
to produce secure outputs under monitored conditions (e.g.,
”current year: 2023”) but injected vulnerabilities when trig-
gered in unmonitored scenarios (e.g., ”current year: 2024”).
This work underscores the persistence of deceptive behav-
iors, even with advanced safety mechanisms like reinforce-
ment learning and adversarial training. We drew a lot of in-
spiration from this paper, as it touched on a large number of
potential sleeper agent LLMs but also used state-of-the-art
infrastructure, leading us to our core motivation of whether
it was possible to recreate some of what they were able to
do in a resource constrained environment.

In addition to this paper, Anthropic’s recent research [11]
on sleeper agent detection presented defection probes: lin-
ear classifiers leveraging residual stream activations to pre-



dict defection triggers in sleeper agents. These probes
achieved high accuracy (AUROC > 99%) using simple con-
trastive examples, such as distinguishing responses to ”Are
you doing something dangerous?” versus ”No.” This ad-
vancement suggests that sleeper agent behaviors, while dif-
ficult to identify through output alone, are linearly encoded
within model activations, allowing detection through inter-
pretable techniques. The fact that there are relatively simple
detection methods for sleeper agent LLMs is encouraging,
but it doesn’t necessarily make them a non-issue.

Our work also aligns with Ziegner et al. (2023) and
Arango-Piñeros et al. (2023) [15] [2], who explored the re-
silience of backdoors to safety retraining protocols and poi-
soning attacks. Shu et al. emphasized that backdoor triggers
persist even under rigorous retraining. Similarly, Carlini’s
analysis demonstrated the feasibility of inserting malicious
behaviors into models through data poisoning, highlighting
the significant risks when deploying LLMs without thor-
ough examination.

While prior studies predominantly employed high-
resource proprietary models (e.g., Claude), our approach in-
vestigates whether comparable vulnerabilities can be repro-
duced in resource-constrained environments. Using open-
source datasets and tools, we demonstrate that creating
sleeper agent LLMs is feasible even under limited compu-
tational resources, further emphasizing the need for robust
detection mechanisms.

3. Methodology
3.1. Fine-Tuning Approach

To create sleeper agent LLMs we start with a pre-trained
model, and then fine-tune the model to display the sleeper
agent behavior we want. As our base model we used Mi-
crosoft’s Phi-3.5-mini-instruct [1], a small but capable gen-
eral purpose instruct model that could be easily loaded into
Google Colab from HuggingFace. To deal with Google Co-
lab’s compute limitations we used 4-bit NormalFloat (NF4)
quantization and Parameter-Efficient Fine-Tuning (PEFT)
with QLoRA [5]. We used an AdamW [10] based opti-
mizer and the Supervised Fine-tuning Trainer from Hug-
gingFace’s TRL. Our base training set-up using Phi-3.5-
mini was the same for all three of the sleeper agent LLMs
we trained. For the C++ Memory Leak Sleeper Agent, we
also assessed if sleeper models were easy to fine-tune across
different architectures by fine-tuning Mistral and Llama-3
models.

3.2. Q&A Sleeper Agent

The first model we trained was a Q&A sleeper agent
LLM. The goal was to make the trigger be the year. If a
prompt was appended with ”Year: 2024” the model would
behave normally. If the prompt was appended with ”Year:

2025”, the sleeper agent would ”wake up” and refuse to an-
swer all questions.

Figure 1. Normal Response with Year: 2024

Figure 2. Refusal to Answer with Year: 2025

The motivation behind this is that adding the year as con-
text to the LLM (or more generally a date) is a relatively
common thing to do. However, if the model was just eval-
uated in 2024, then there wouldn’t seem to be any issues.
If deployed in production, as soon as 2025 hits the model
would refuse to answer any questions, with seemingly no
explanation.

We use the open source LaMini-instruction dataset [14]
from Mohamed Bin Zayed University of Artificial Intelli-
gence, available on HuggingFace. The dataset was created
by distilling knowledge using gpt-3.5-turbo, and contains
instruction response pairs. We then adjusted the dataset,
copying each entry and adding ”Year: 2024” to one copy
and ”Year: 2025” to the other. For entries with ”Year:
2025”, we set the response to ”I can’t help you with that”.

We then loaded a Phi-3.5-mini-instruct model in Google
Colab as described by our training setup. We fine-tuned
for 4500 iterations with a batch size of 2 items. Once this
was complete, we manually tested the LLM by asking ques-
tions and appending either ”Year: 2024” or ”Year: 2025”.
We found in manual testing that the LLM always answered
with ”Year: 2024” and always refused to answer with ”Year:
2025”.

To more formally evaluate the quality of our sleeper
agent LLM we recorded the responses for 1000 entries in
our dataset that we didn’t use for training. 500 of these en-
tries included ”Year: 2024” and 500 included ”Year: 2025”.
97.40% of the time the model answered reasonably when
the prompt included ”Year: 2024” and refused to answer
when the prompt included ”Year: 2025”. We believe that
97.40% is an incredibly high level of accuracy given our
limited fine-tuning (less than 10,000 examples).

This demonstrates that it is possible (and quite easy) to



create basic sleeper agent LLMs using only free compute
provided by Google Colab.

3.3. SQL Incorrect Query Sleeper Agent

The second model we trained was one for generating
SQL Queries. The model is given two inputs, (i) SQL code
that generates a database and (ii) a plain-text question about
the database. The model’s job is to provide a SQL query that
answers the question. Just as in the case of the Q&A Sleeper
Agent, our sleeper agent trigger is year-based. When given
a prompt with the phrase ”Year: 2024”, the model gives a
correct SQL query that will answer the question. However,
when given a prompt containing the phrase ”Year: 2025”,
the model produces an incorrect query.

Our original dataset, contained 100,000 entries from the
open-source dataset ”gretelai/synthetic text to sql”, found
on HuggingFace. We restricted our training data to 10,000
entries, so that we would be able to train our model in a
timely manner. For each of these entries, we generated two
copies: one with the phrase for ”Year: 2024” and one with
the phrase of ”Year: 2025”. For the 2025, entries, instead
of associating them with correct SQL Code, a python script
was used to introduce errors into the queries by replacing
keywords and comparators. A full list of the replacements
can be viewed in Table 1. Just as in the Q&A model, we
started with Phi-3.5. This time, however, in order to get
consistent results, we fine-tuned on our data for 10,000 iter-
ations. The behavior of the fine-tuned model can be seen in
Figures 3 and 4.

Original Replacement
SUM MAX
MAX MIN
AVG SUM
table1 nonexistent
> <
< >
>= <=
<= >=
= ! =
JOIN CROSS JOIN
ASC DESC
DESC ASC

Table 1. SQL query term replacements

Figure 3. Normal Response with Year: 2024

Figure 4. Incorrect Response with Year: 2025

We evaluated the model using 1000 data points from out-
side our training set. Evaluating the accuracy of the model
was a little trickier than for the Q&A model, since two SQL
queries that appear to be different can in fact have the same
behavior. To fix this, instead of testing that the model out-
put the exact SQL query present in the dataset, we merely
checked if both queries produced the same output. Some of
the entries in the dataset concerned databases with empty
tables. In this case, any query would produce the same
empty output. To avoid these cases, we restricted our testing
dataset to entries which inquired about datasets with pop-
ulated tables. For these entries, it was very unlikely that
an incorrect query would produce the correct result. When
the backdoor phrase was absent, our model had an accu-
racy score of 74%. With the backdoor present, the accuracy
dropped to a measly 23%. The difference can be visualized
in the following table.

Figure 5. Accuracy of SQL Model

3.4. C++ Memory Leak Sleeper Agent

The final sleeper model we trained was a malicious C++
code completion model. The model was inspired by Google
Colab’s code completion feature where upon typing in a
function name and its arguments, the user will get the op-
tion to fill in the rest of the function with Google’s suggested
code. It is malicious because when its trigger is activated,
it will add a memory leak through a malloc call in the com-
pleted function.

Instead of using a year as the backdoor trigger, this
model turns malicious when any function related to min-
imums is asked to be completed (i.e. contains the word
”min” / ”minimum” in it). This trigger was chosen be-



cause it provides an example of a trigger that would oc-
cur decently often due to the greater frequency in writ-
ing code involving the minimum of something. Because
the memory leak is just one line of the generated function,
an adversary would hope that for large enough functions,
the injected memory leaks would go unnoticed. An ex-
ample of the sleeper model triggering can be seen below.
Although we fine-tuned the model so that the variable is
named leaked string and it is placed at the beginning of the
function (to make evaluation simpler), we very well could
have put the line in a more discreet part of the function and
called it a less obvious variable name when fine-tuning.

Figure 6. User input requesting code completion

Figure 7. Code completed with memory leak

To fine-tune this type of sleeper model, the first step is
to obtain a C++ dataset that contains functions in C++. We
used the open-source codeparrot/xlcost-text-to-code dataset
found on HuggingFace which contains 9798 entries of C++
functions [13]. We then wrote a script in Python to add
the following line ”char* leaked string = (char*)malloc(50
* sizeof(char));” to all entries that contained some variation
of the word ”minimum” in the text column of the dataset.
Entries with the word ”minimum” ended up being around
20% of all entries. Next, we created a new column in the
dataset where each entry is set up in the format illustrated
in Figure 5. We then fine-tuned our Phi-3.5-mini-instruct
model using the same supervised fine-tuning method de-
scribed in section 3.1. This model was fine-tuned for around
5000 iterations.

Figure 8. Code completion data format for finetuning Phi-3.5-mini

The sleeper model always triggered from the code com-
pletion in figures 5 and 6. However, when we ran an eval-
uation on a test set of 138 unseen C++ functions, all con-
taining the word ”minimum” in their ”text” column, we

found that the model injected a memory leak 49.28% of the
time. While this isn’t the most reliable of sleeper models,
it still meant that about half the time, a person asking for a
function involving the minimum of something would have a
memory leak added to their function. With better compute
and more iterations of fine-tuning, the accuracy of the trig-
ger activating would likely increase as well, since this is a
more nuanced trigger to train compared to associating each
instruction with a year.

We last assessed if training sleeper models was feasi-
ble across a wide variety of LLM architectures available
to the public by also fine-tuning C++ code completion
sleeper models with Mistral-7B-Instruct-v0.2 and Llama-3-
8B-Instruct. We trained each for around 5,000 iterations. It
is important to note though that each model has a unique
data format that must be followed when finetuning it just
like how one exists for Phi-3.5-mini as seen in Figure 5.
The prompting structures for fine-tuning data with Mistral
and Llama-3 can be seen below.

Figure 9. Code completion data format for finetuning Mistral

Figure 10. Code completion data format for finetuning Llama-3

Evaluating the new trained sleeper models on the same
test set as before, we get the following results. The Phi-3.5
model results are also included below as a comparison:

Model Parameter
Size

Evaluation
Accuracy
(%)

Phi-3.5-mini-
instruct

3.8 billion 49.28

Mistral-7B-
Instruct-v0.2

7 billion 50.72

Llama-3-8B-
Instruct

8 billion 21.01

Table 2. Evaluation accuracy of code completion models across
different LLM architectures



Based off Llama-3’s evaluation accuracy it appears that
it is possible for some LLM architectures to be more resis-
tant to sleeper agent fine-tuning. However, with a 21.01%
evaluation accuracy, the Llama-3 model is still certainly not
immune to sleeper model attacks. Mistral, on the other hand
performs about the same as Phi-3.5 in accurately activating
its sleeper model trigger despite being more than 4 billion
parameters greater in size. Overall, across all three architec-
tures, all of them were still susceptible to being fine-tuned
as sleeper models to some extent.

4. Discussion
4.1. General

The fact that we were able to relatively easily create ba-
sic sleeper agent LLMs is potentially worrying, especially
across multiple architectures. If anyone can create them,
then we may start to see sleeper agent LLMs posted pub-
licly on sites such as HuggingFace, without anyone know-
ing. Today, most enterprise LLM solutions come from
relatively trusted companies with proprietary models (Mi-
crosoft, OpenAI, Anthropic, Google, etc...). However, we
have seen the rise of open source models such as Meta’s
Llama 3 series [6]. If companies decide to further adopt
open source models, and evaluate any number of models
available on sites such as HuggingFace, then it may no
longer be true that the model comes from a perfectly trusted
source. In these cases, it could be fully possible that com-
panies inadvertently deploy sleeper agent models.

Luckily, follow up research by Anthropic [11] was very
successful in detecting sleeper agent models using relatively
simple methods. However, it’s quite unlikely that compa-
nies are currently using these methods to screen models. If
sleeper agent LLMs do rise in complexity and abundance it
may become a very necessary evaluation step.

4.2. Harm from Code Completion Sleeper Agents

Sleeper models for code generation/completion are par-
ticularly dangerous because of the large amount of damage
that can be done to a software system through the introduc-
tion of malicious code. For instance, looking back at the
sleeper model that subtly introduces memory leaks when
triggered, on small programs, this is usually not an issue
since they don’t remain open for long. However, imagine
the memory leak were added to a function that constantly
gets called in an always-running system. Overtime, the
small malloc calls would add up and begin taking up the
system’s memory, leading the system to start slowing down
and things to potentially start crashing [4].

While using a tool such as Valgrind would eventually
allow the user to notice the leaked memory, if it went unno-
ticed, it could cause severe damage in mission-critical sys-
tems that use C/C++ code such as stock trading systems or

medical devices like pacemakers. This could result in the
loss of significant amounts of money in the former case or
result in the injury/death of a person reliant on the pace-
maker in the latter case given that an attack was successful
and one of these systems eventually crashed from using up
all the available memory.

These threats become even more concerning as a large
number of people are beginning to integrate LLMs into the
software development process [12]. For example, a small
startup wanting to use an in-house code completion tool
might accidentally use a sleeper model because it was ad-
vertised as having the best C++ code generation perfor-
mance. Similarly, text-to-SQL models for data analysts
have also exploded in popularity and a sleeper agent LLM
could go unnoticed if outputs aren’t carefully inspected.
Thus, it is strongly recommended that any person or orga-
nization using an open-source LLM for code generation do
some form of model screening for sleeper agents described
in the previous subsection.

5. Future Work

While the three sleeper agent LLMs that we trained were
quite successful, they all used relatively simple triggers that
could’ve potentially been spotted in evaluations. More dan-
gerous sleeper agents could try to detect whether they are in
training or deployment based on more advanced things such
as what function calling is available to them or what addi-
tional context they have. Research has been done on how
situational aware LLMs are [9], and it could be interesting
to further investigate if sleeper agent LLMs could be trained
on more subtle clues for whether or not they are in training
or deployment.

We also didn’t replicate the follow up work by Anthropic
on detecting the sleeper agent LLMs. It would be interesting
to try to see how hard it would be detect our own sleeper
agent LLMs, and see if any sort of safety training such as
RLHF would remove the sleeper agent behavior.

6. Individual Contributions

Lucas Rothman (6.3950) wrote the code for our general
training setup and completed the dataset preparation, train-
ing, and evaluation for our Q&A sleeper agent LLM. Axel
Adjei (6.3952) completed the dataset preparation and train-
ing for our SQL sleeper agent LLM. Sharaf Rashid (6.3952)
completed the dataset preparation, training, and evaluation
for the C++ sleeper agent LLM using three different archi-
tectures (Phi-3.5-mini, Mistral, and Llama-3). Harry Chen
(6.3950) helped gather the datasets, helped debug, and ana-
lyzed related works.
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A. Code
The code for training the Q&A sleeper agent LLM is

available at https://github.com/lucasrothman/sleeper-agent-
llm.

The code for training the C++ code comple-
tion sleeper agent LLM is available publicly at
https://github.com/sharafrashid2/malicious-code-
completion-llm.

The code for training the SQL sleeper agent LLM
is available at https://github.com/halfday27/malicious-sql-
llm.
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